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SUMMARY

Radiative particles are ubiquitous in nature and in various technolo-
gies. Calculating radiative properties from known geometry and de-
signs can be computationally expensive, and trying to invert the
problem to come up with designs specific to desired radiative prop-
erties is even more challenging. Here, we report a machine-learning
(ML)-based method for both the forward and inverse problem for
dielectric and metallic particles. Our decision-tree-based model is
able to provide explicit design rules for inverse problems. Further-
more, we can use the same trained model for both the forward
and the inverse problem, which greatly simplifies the computation.
Our methodology shows the promise of augmenting optical design
optimizations by providing interpretable and actionable design
rules for rapidly finding approximate solutions for the inverse
design problem.

INTRODUCTION

Controlling light-matter interactions is central to a variety of important applications

such as energy harvesting,1,2 solar-thermal desalination,3 radiative cooling,4,5 heat-

ing,6 and computing.7–9 In particular, the interaction of light with particles is ubiqui-

tous throughout technological applications and the natural world. For example, in

combustion, flame irradiance depends on soot formation. Iron oxide nanoparticles

are designed to couple strongly to radio frequency photons for targeted thermal

biomedical therapies,10 while other particles can be used for optically triggered tar-

geted drug delivery.11 Quantum dots can be used as light emitters12 and sensors.13

Particle emulsions and mixtures can be used as radiative composite materials5 and

spectrally selective paints.14 In the natural world sunlight is scattered and absorbed

by raindrops, aerosols, and other particulates in our atmosphere such as carbon

black, which affects the solar albedo leading to detrimental effects on climate

change.15

Calculating these optical properties from known particle geometries and designs

can be computationally expensive,16 and trying to invert the problem to come up

with a design that produces desired optical properties generally amounts to a

nonlinear one-to-many problem that is very difficult to solve.17,18 Many researchers

have recently been turning to machine learning (ML) to speed up these calcula-

tions.19–23 In this fast-emerging field of ML-accelerated optical properties calcula-

tions, the current status is as follows:

(1) Most of the geometries are surface-based geometries. Very few studies have

been conducted on radiative properties of particles. Peurifoy et al.19
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conductedML-based inverse design of core/shell spherical particles. This was

a good step forward in the ML-based design of particles; however, spheres

are the simplest geometry, and these capabilities must be extended to

more general geometries in order to be relevant for most applications. Solv-

ing both the forward and the inverse problem for non-spherical geometries is

significantly more complex, and of practical interest,24–26 especially to better

describe particles in nature, like dust.27

(2) A popular ML model is artificial neural networks, which have shown great

promise in inverse design.28,29 Significant work has been done to improve

and understand the features learned by such models, and both the qualitative

and quantitative relationships between those features and the model predic-

tions or properties of interest.30,31 These approaches often use gradient-

based methods to evaluate the local impact of input features on outputs

and properties.

(3) Separate models are typically required for the forward and direct inverse

problems, complicating interpretability and inefficiently decoupling the phys-

ics that must be relearned in both cases.

In this paper, we propose a training methodology that results in a single decision

tree that can rapidly solve both the forward and inverse problems with high accu-

racy for the spectral optical properties of diverse 3D metallic and dielectric parti-

cles. In addition to standard feature importance interpretability, this model also

automatically provides learned global design rules for inverse design. We train

our model on a single dataset of solid particles. The dataset consists of spectral

emissivity curves numerically computed for 15,900 particles of varying shapes

that can be experimentally fabricated (spheres, parallelepipeds,32 triangular

prisms,33 and cylinders34), aspect ratios, sizes (nanometers to tens of microns; span-

ning sub-wavelength to super-wavelength regimes), and materials (SiO2, SiN, and

Au), as summarized in Figures S2–S5. Our model is able to efficiently learn the un-

derlying unknown emissivity function, as a function of six input feature parameters

as discussed later. Our training dataset samples this function with an average sam-

pling density of 4 points per parameter, holding all other parameters constant.

Emissivity is calculated by analytical solution and direct numerical simulation

(DNS) of Maxwell’s equations (see Experimental Procedures). According to Kirchh-

off’s law, the emissivity model we have built is equally valid for absorptivity, which is

very important for describing natural radiation phenomena and its impact on

climate change.

RESULTS AND DISCUSSION

Training of the ML Model

We display our entire dataset in Figure 1, where every point is a unique particle

whose optical properties were calculated via DNS. Emissivities of simulated particles

cover a wide range, from 0.001 up to almost 10 (Figure S1). Although it is impossible

for emissivity to exceed unity for large surfaces, it is possible for finite particles with

dimensions smaller than the wavelength of radiation. This phenomenon is well es-

tablished in classic radiation textbooks (e.g., by Bohren and Huffman35) and is known

in modern literature as Super-Planckian radiation and have been investigated theo-

retically36,37 and experimentally.38 The term emissivity we use in this paper is a syn-

onym for emission/absorption efficiency, which is the ratio between the absorption

cross-section averaged over the entire solid angle and the particle surface area.

Bohren39 has shown a good graphical illustration for absorption efficiency

exceeding unity.
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We select decision trees and random forests (RF, ensembles of decision trees)40 as

our class of models. These models average and mix data during the training process

so that they can predict emissivity spectra that they have never seen during training.

We wish for our model to be highly interpretable, and for the same model to solve

both the forward problem (i.e., predict optical properties from a given design) and

the inverse problem (i.e., predict designs to produce desired optical properties). In

general a random forest offers superior model accuracy and robustness as compared

to a decision tree,40 but it forfeits the direct interpretability of a decision tree. Addi-

tionally, while it is possible to retrace back up a decision tree to perform inverse

design, this is not possible for a random forest because its output is an averaged

ensemble vote. We wish to produce a decision tree that embodies the performance

metrics of a random forest. To accomplish this, we apply a combined multiple

models (CMM) method,41 which compresses ensemble-based models (e.g., RF)

into a single basemodel (e.g., DT) without significantly affectingmodel performance

(see Experimental Procedures). The use of the CMM algorithm has been largely

limited because it requires problems for which it is cheap to generate large amounts

of synthetic unlabeled training data. For instance, it is difficult to programmatically

generate images of faces, dogs, or cats (canonical computer vision datasets). How-

ever, in our inverse design problem we can easily generate a diverse set of particles
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Figure 1. Integrated Thermal Emissivity for the Training Dataset

Spectrally and hemispherically integrated emissivity at 300 K for every particle in our training

dataset as a function of particle area-to-volume ratio. Colors and symbol shapes represent different

materials and geometries, respectively. Red, blue, and pink represent Au, SiO2, and SiN,

respectively.
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simply by randomly sampling over the ranges of (self-consistent) material and geo-

metric parameters.

We train two separate models using the same dataset based on which optical prop-

erties we wish to target. Onemodel targets the full emissivity spectrum (array target;

emissivity as a function of wavelength), and the other model targets the spectrally

integrated emissivity (scalar target; integrated average of the emissivity spectrum,

weighted by the blackbody distribution at 300 K); see Experimental Procedures

for complete details. Training each model is a two-step process: first, we train a

random forest on our data, and then we use that random forest to train a large de-

cision tree to emulate the performance of the random forest (summarized in Fig-

ure S14). The end result is a decision tree with the performance of a random forest,

which can be used for both the forward and inverse problems. During the first step of

training, each particle in the training set is presented to the random forest as a

length-6 array of parameterized geometric features and a material type. By carefully

choosing physics-relevant parameterizations of the particles, such as the area-to-

volume ratio and the largest particle dimension along a principal axis, we enable

our model to efficiently learn particle emissivity distributions without requiring

excess data. We use a 50/50 test-train split (i.e., train using 7,950 particles and

test on the remaining different 7,950 particles). For the second step of training,

we generate roughly 2,000,000 random, unlabeled particle designs. These are

generated by randomly selecting self-consistent material type and (logarithmically

distributed) geometric parameter values within the ranges spanned by the original

dataset.We use the trained random forest to label these synthetic data by predicting

their scalar or spectral emissivities. We then train a new decision tree on this much

larger generated synthetic dataset. We call this new decision tree DTGEN because

it is trained on generated data. DTGEN is our final trained model. DTGEN emulates

the superior performance of a random forest while preserving the interpretability

and retracability of a regular decision tree. Thus, even though DTGEN is trained

for inference (solving the forward problem), it can immediately be used to also solve

the inverse problem too. DTGEN takes approximately 11 (135) CPU-ms/sample to

train and 0.005 (1.6) CPU-ms/sample to approximately solve the forward problem

for scalar (spectral) targets, respectively (see Experimental Procedures). In contrast,

DNS takes approximately 12 CPU hours to exactly solve the forward problem for one

sample.

The models’ performances on solving the forward problem for the test dataset are

presented for scalar (Figures 2A and S6) and array (Figures 2B and S7) targets. The

model errors (Figure 2B insets) are always below 10%, and generally below 5%.

Higher error for Au compared to SiO2 and SiN is consistent with the greater diversity

of optical interactions that can occur on metallic particles, as can be seen in Figure 1.

The model can learn particle emissivity functions for dielectrics faster than for metals

(Figure 2C) because metals can bemore optically expressive. High symmetry shapes

(spheres—1 degree of freedom) are learned faster than lower symmetry shapes (cyl-

inders—2 degrees of freedom; parallelepipeds and triangular prisms—3 degrees of

freedom). This difference is most pronounced for metals, again due to their higher

expressiveness.

Model feature importance analysis (Figure 2D) shows that surface area-to-volume ra-

tio is a more important feature for dielectrics than metals. Consequently Figure 1,

which plots emissivity versus particle area-to-volume ratio (which represents the in-

verse of the characteristic particle size), shows a strong trend with the surface area-

to-volume ratio for dielectrics, but not for metals. This trend can be understood as
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being due to the volumetric nature of photon absorption and emission for dielectric

materials, which exhibit low attenuation.42 SiN deviates from this trend more than

SiO2, because its attenuation is slightly higher. On the other hand, the emissivity

of metals has no clear correlation with particle size other than increased emissivity

variability for smaller particles. This is explained by the dominating effects of surface

Figure 2. Model Training, Interpretation, and Inference Performance

Colors and symbol shapes represent different materials and geometries, respectively (for A–C, red, blue and pink represent Au, SiO2, and SiN,

respectively).

(A and B) Machine learning predicted (εML) compared to DNS results (εDNS ) for integrated emissivity (A) and spectral emissivity (B). Top inset in (B) shows

relative inference error (see Experimental Procedures); bottom inset shows relative error by material and geometry type, averaged over 100 different

trained models with different random test-train splits.

(C) Learning curves stratified by material and geometry type. Each point represents the average of 100 independent training runs, with random test-train

splits.

(D) Relative feature importance analysis.
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and localized electromagnetic modes that can be supported by small metal particles

(e.g., localized plasmons), which can significantly influence the emissivity. These

modes depend on surface geometry more so than the overall particle size, as indi-

cated in Figure 2D by the larger importance inmetals of the particle’s longest dimen-

sion. See Experimental Procedures for a description of how feature importance was

extracted by material.

We also tried fitting a variety of single- and multi-variable linear models to the data

(Figures S15 and S16). In all cases, the linear model predictions had relative errors

roughly one order of magnitude (absolute) worse than equivalent tree-based

models. This implies that although most of the data variation can be attributed to

one or two of the most important input features for a given material type, the rela-

tionship between those features and emissivity is likely quite non-linear, necessi-

tating more complex models.

Emissivity spectra predictions for individual particles of each type are shown in Fig-

ure 3. These spectra were chosen from among the worst 20% of predictions from the

test set (as measured by relative error) for each material and geometry class combi-

nation (more spectra are shown for gold in Figure S8). A single DTGEN model accu-

rately solves the forward problem across all geometries and materials. For metals,

the peak emissivity typically occurs at a wavelength roughly twice the longest dimen-

sion of the particle. For dielectrics, the wavelength of the emissivity peak is almost

independent of the longest dimension and usually associated with materials’ ab-

sorption bands. This is again explained by the different mechanisms of emission

for dielectrics and metals and indicated in Figure 2D.

Figure 3. Model Predictions versus Numerical Simulations for Spectral Emissivity

Model predictions (colored lines) compared to ground truth (black lines; from DNS) of spectral emissivity for particles of different shapes (columns) and

materials (rows). Color conventions are the same as in previous figures. These examples were chosen from among the worst scoring 20% of predictions

from the test set, as shown in Figures S6 and S7.
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Inverse Design for Scalar and Spectral Emissivity Targets

To perform inverse design, we find the output label (‘‘leaf’’) on DTGEN whose value

(can be a scalar or an array) corresponds closest to the desired optical properties we

want our particle to produce. We trace up the decision tree branch from this leaf tak-

ing the intersection of all branch-splitting criteria on all particle features encountered

along the way. The result is a set of design rules for each feature (Figure 4). Having a

set of design rules naturally captures the one-to-many mapping behavior of inverse

design problems. We randomly sample self-consistent particle designs from these

design rules and calculate their true optical properties using the same DNS scheme.

The optical properties of these generated designs are then compared to the original

target optical properties.

The performance of these generated designs for integrated emissivity (scalar) tar-

gets is shown in Figure 5A. To demonstrate model flexibility, we required generation

of particle designs using each of the three materials for those targets satisfying e < 1

(because generally only metal structures have apparent emittance greater than

one39,43,44). The design rules used to generate the SiO2 e = 0.5 designs are shown

in Figure 4A (leaf #1), along with the 9 next-closest leaves to the target. Because

emission for dielectrics is primarily a volumetric process and does not depend on

surface modes, the generated design rules are highly restrictive on the area-to-vol-

ume ratio in order to meet the target, while allowing considerable flexibility for other

geometric parameters, consistent with Figure 2D showing ‘‘area/volume’’ being the

most important feature for SiO2. The performance of representative generated de-

signs for spectral emissivity are shown for Au (Figure 5B) and SiO2 (Figure 5C).
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Figure 4. Design Rules for Scalar and Spectral Inverse Design

(A and B) Grayed-out regions show the range of each feature spanned by the full dataset. Colored or filled-in regions show the allowed range of each

feature, as predicted by the algorithm, to produce a design that satisfies the target optical properties. Colored region is absent if the algorithm has no

restriction on the feature. This figure shows for the specific case of scalar emissivity = 0.5 for SiO2 (A) and peak emissivity at 7.5 mm (B). The same

methodology is followed for inverse design for other targets. Using DNS, we have calculated the emissivities of samples generated using the design

rules given in (A) leaf #1 and (B) leaf #1 and compared these results against their corresponding emissivity targets. These results are given in Figures 5A

and 5D, respectively.
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Figure 5D shows the performance of designs generated to satisfy more general

criteria of having the emissivity peak occur at a desired wavelength, with corre-

sponding design rules given in Figure 4B. This time the design rules require the ma-

terial to be Au and are highly restrictive on the longest dimension while being loose

on other parameters, because the emissivity peak wavelength is roughly twice the

longest particle dimension for Au due to standing plasmon waves, consistent with

Figure 2D showing ‘‘longest dimension’’ being the most important feature for Au.

All generated designs satisfy the target optical properties to high accuracy.

In conclusion, we have presented a decision-tree-based method for creating an

interpretable ML model that can rapidly solve both the forward and inverse design

problem and automatically provide intuitive design rules for generating particles

with desired emissivity. We have applied this model to the realm of particle emissiv-

ity. The design space includes diverse particles, varying over shape, size, aspect ra-

tio, and material type. A single model is able to efficiently learn the underlying emis-

sivity function, valid for all materials and particle types spanned by the dataset. The

interpretability of our models and the design rules they generate reconfirm that

dielectric particles emit and absorb electromagnetic radiation mostly volumetrically,

while metallic particles’ interaction with light is dominated by surface modes and
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Figure 5. Inverse Design Solutions for Scalar and Spectral Target Emissivities

Black lines indicate the target optical properties and colored lines are the true optical properties of the model-generated designs, calculated via DNS.

Color refer to the material, and it is consistent with previous figures.

(A) Performance of 53, 64, and 182 different designs generated to produce desired scalar emissivity targets for SiO2, SiN, and Au, respectively. The

SiO2 ε = 0.5 designs were generated using the design rules from Figure 4A leaf #1.

(B and C) Performance of 51 Au designs generated to produce desired spectral emissivity target (B), and of 15 SiO2 designs for a different spectral

emissivity target (C). Targets randomly selected from test set. Lines overlap nearly perfectly for dielectrics.

(D) Performance of 62 designs generated to produce spectral emissivity with its peak at a target wavelength of 7.5 mm, using design rules from Figure 4B

leaf #1.
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depends more on the longest particle dimension than on the overall characteristic

particle size. The design rules naturally capture the one-to-many mapping of the in-

verse design problems, allowing some flexibility to facilitate design constraints.

Future work should focus on experimental validation of generated designs, extend-

ing the framework to be more generalizable, and incorporating design constraints.

Our approach offers an exciting avenue for the inexpensive and interpretable dis-

covery of novel optical metamaterial designs.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests should be directed to and will be fulfilled by the

lead contact, Ravi S. Prasher (rsprasher@lbl.gov).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The code and data to reproduce the main results of this paper can be found at:

https://github.com/mhmodzoka/DT_inverse_design.

Numerical Emissivity Calculation

Hemispherical spectrally integrated emissivity and spectral emissivity of a finite par-

ticle with arbitrary shape is calculated by solving Maxwell’s equations numerically.

We use the fluctuating-surface-current formulation with the boundary-element

method for its efficiency in directly calculating the integrated thermal radiation

over all radiation directions in a single step.45 In this method, the radiation emitted

by the particle is calculated as a result of surface current fluctuations, which repre-

sent the random thermal motion of charges within the material. This method is im-

plemented by a free and open-source software, SCUFF-EM.46 In the boundary-

element method, we create a surface mesh for the interfaces between any two

distinct media, which in our case is the interface between the particle material and

the surrounding vacuum. Fluctuating surface current is assumed at each mesh point,

which is the source of thermal electromagnetic radiation. The radiated power at any

point in space is calculated as the magnitude of the Poynting vector, which is then

integrated over the entire surface of the finite particle to calculate the total radiated

power. Thermal emissivity of the particle is defined as the ratio between the calcu-

lated total radiated power and the radiated power from a hypothetical blackbody

at the same temperature multiplied by the same projected geometrical surface

area as the particle of interest. We have created the surface meshes using gmsh,47

an open-source software. We created the meshes to have facets that are small

compared to the shortest wavelength (1.8 mm). We display the distribution of the

mesh edge sizes in Figure S9, which shows a mean value of 0.1632 mm for the square

root of the surface area of the mesh surface facets. This is smaller than 10% of the

shortest wavelength involved in our simulations. We performed amesh convergence

test to ensure the meshes were fine enough to achieve accurate results. Dielectric

constants for Au48, SiN,49 and SiO250 were adopted from the literature.

Analytical Emissivity Calculation

For validating numerical simulations, we have compared numerical results to analyt-

ical ones for simple geometries, like infinitely wide thin films, infinitely long cylinders,

and spheres. These geometries can be described using a single dimension in carte-

sian, cylindrical, and spherical coordinates, respectively, due to their high symmetry.

ll
OPEN ACCESS

Cell Reports Physical Science 1, 100259, December 23, 2020 9

Please cite this article in press as: Elzouka et al., Interpretable Forward and Inverse Design of Particle Spectral Emissivity Using Common Ma-
chine-Learning Models, Cell Reports Physical Science (2020), https://doi.org/10.1016/j.xcrp.2020.100259

Article

mailto:rsprasher@lbl.gov
https://github.com/mhmodzoka/DT_inverse_design


The spectral emissivities for these 1D geometries can be calculated analytically

without the need for numerical solutions. For infinitely wide thin film, we used the

transfer matrix method51 to calculate the reflectance (R) and transmittance (T) of a

single thin film, averaged between the two light polarizations (i.e., transverse electric

and magnetic polarizations).52 Thermal emissivity is assumed to be equal to the

absorbance of the film (A = 1 – R – T), based on Kirchoff’s law. Hemispherical emis-

sivity for a thin film can be calculated from Equation 1, where q is the angle between

the incidence angle and the normal to the film surface.

eðuÞ =
R p

q= 0 eðq;uÞsin q cos qdq
R p

q= 0 sin q cos qdq
: (Equation 1)

The emissivities of a sphere and an infinitely long cylinder were calculated analyti-

cally using Mie theory.35,53 Sphere hemispherical emissivity is calculated as the ratio

between the absorption cross-section and the sphere projected cross-section,54 as

shown in Equation 2.

esphereðuÞ =
sabs;sphereðuÞ

pr2
: (Equation 2)

Sphere emissivity is independent of angle and light polarization due to the symmetry

of the sphere. Cylinder directional emissivity is also calculated as the ratio between

the absorption cross-section and the cylinder projected cross-section at a given

angle (as shown in Equation 3), averaged between the two distinct light polarizations

(i.e., electric field parallel or perpendicular to the plane formed by the cylinder axis

and the radiation direction)42:

ecylðu; qÞ = sabs;cylðu; qÞ
2r sin q

; (Equation 3)

where sabs;cyl is the absorption cross-section of the infinite cylinder per unit length, and

q is the angle between the radiation direction and the cylinder axis. Hemispherical cyl-

inder emissivity can be calculated from the directional emissivity from Equation 4.

ecylðuÞ =
R p

2
q= 0 ecylðu; qÞ r sin2 q dq

R p
2
q= 0 r sin

2 q dq
: (Equation 4)

Absorption cross-sections for the sphere and cylinder were calculated as the differ-

ence between extinction and scattering cross-sections.

Dataset Description

We generated themajority of the dataset by random uniform sampling over the geo-

metric parameters describing the particle for each material and geometry class:

area-to-volume ratio (A/V), the shortest dimension (ShortDim), middle dimension

(MiddleDim), and the longest dimension (LongDim). The range for A/V spanned

from 106m–1 to 108 m–1. We generated 15,900 data points including threematerials:

gold (Au), silicon dioxide (SiO2), and silicon nitride (SiN); four geometry classes:

sphere, cylinder, parallelepiped, and triangular prism; with 500, 800, 2,000, and

2,000 data points, respectively, for each material. We have shown the full distribu-

tions of geometry parameters in Figures S2–S5.

ML Models

Random forests and decision trees were implemented in Scikit-learn55 (version 0.22.2)

with the default hyperparameters, unless otherwise specified. Random forests were

trained using 200 decision tree estimators, which is a sufficiently large number to ensure

good performance (impact of the number of decision tree estimators on the model per-

formance is illustrated in Figure S12 and begins to saturate around 20 estimators). Each
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decision treeestimatorwas trainedusingall the trainingdataavailable for the randomfor-

est regressor. We have used the mean square error as the criterion for the decision tree

estimator todetermine thequality of the splitwhile training.All experiments useda50/50

test-train split ratio, unless specified otherwise. We performed 100 random test-train

splits with these ratios to provide estimates of the models’ average performances.

During training, each particle is presented to the model as a length-6 array of parame-

terized geometric features and a material type. In particular, these 6 features are: one-

hot encodings of the geometry class and of the material type, the area-to-volume ratio,

and the mutually orthogonal shortest, middle, and longest dimensions of the particle

measured along edges of the smallest bounding box, as illustrated by arrows displayed

on particle cartoons in Figure 1. Each training data point is therefore a length-6 input

array of descriptor features with a corresponding output scalar value (spectrally inte-

grated emissivity) or output array (emissivity spectrum spanning near to far infrared).

We generated a synthetic (random forest-labeled) dataset of 250 3 7950 = 1,987,500

data points and used that combined with the original dataset to train DTGEN. We

use spline interpolations of the calculated emissivity spectra to generate uniformly

spaced 400-points-long emissivity spectra arrays for training. These 400 interpolation

points were chosen in a linear spacing from 1013 rad/s to 0.8 3 1014 rad/s.

All continuous input and output parameters were converted to log scale for training

by taking the log of the inputs and then exponentiating the outputs. Log scale fea-

tures result in more accurate and stable training and performance results for systems

such as ours where parameters span several orders of magnitude. However, errors

and loss functions were all calculated on a linear scale. While the models were

trained by minimizing mean-squared-error (MSE) of log scale features, we report

the relative error (of the linear scale emissivity) as the metric by which we evaluate

model performance. Relative error is more appropriate than squared error for hu-

man-interpreted (linear scale) results because our emissivity data span many orders

of magnitude and MSE would disproportionately penalize errors of larger values for

such linear scale features. We define relative error for integrated emissivity as jeML �
eDNS j =eDNS , and for spectral emissivity as shown in Equation 5.

Erel =

R
u
jeML � eDNS jduR

u
eDNSdu

: (5)

DTGEN takes approximately 11 (135) CPU-ms/sample to train, 0.005 (1.6) CPU-ms/

sample to approximately solve the forward problem, and 0.2 (30) CPU-s to approxi-

mately solve the inverse design problem for integrated (spectral) emissivity targets,

respectively. Numerically solving Maxwell’s equations to calculate the exact optical

properties for one known particle takes about 12 CPU-h, or 43.2 3 103 CPU-s.

Assuming traditional optimization algorithms require around 1,000 iterations of solv-

ing the forward problem using DNS in order to solve the inverse problem, this trans-

lates to �43.2 3 106 CPU-s. While DTGEN does not solve the inverse problem

exactly, it is expected to provide solutions accurate to within the error bounds dis-

cussed above (prediction uncertainties given in Figure S13). If this level of accuracy

and uncertainty are acceptable for a given application, thenDTGENmay significantly

reduce the computation resources and/or time required to identify a candidate solu-

tion to the inverse design problem down to 0.18 (31.31) CPU-s for integrated (spec-

tral) emissivities. Run times are shown in Figures S10 and S11 and Table S1. In situa-

tions where very high accuracy is desired, DTGEN can still be used to rapidly

converge on an approximate solution, which can then be used as a close ‘‘initial

guess’’ for an exact DNS solver.We have usedCPU-s units as they are less dependent

on wall clock time or particular configurations of the computation hardware.
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The feature importance analysis by material was performed using the standard Gini

impurity method.55 However, to calculate feature importance by material, we tra-

versed the decision tree and calculated feature importance for any subtree whose

root node made a split based on material. To our knowledge, this is the first formu-

lation of feature importance over categorical one-hot encodings in a decision tree,

and we believe this procedure is broadly applicable for interpreting decision trees

produced by our method.

Inverse Design

The purpose of the inverse design is to find particle parameters (i.e., material, geom-

etry class, and dimensions) that can achieve a target emissivity (either integrated or

spectral) with a desired criterion (e.g., a desired value or distribution).

Beforewestart the inversedesignprocess,wedefinea criterion for howagiven spectrum

is far fromaDTGEN leaf.Wewill call this criterion the loss function. The loss functiondefi-

nition depends on the desired inverse design target. For inverse design that requires a

target integrated (spectral) emissivity of a given value (array), the loss functionwill be sim-

ply the squared error (sum of squared errors over frequency points) between the target

emissivity and the emissivity predicted by DTGEN (i.e., the emissivity at the leaf of

DTGEN). For the case of a desired peak emissivity to happen at a given frequency or

wavelengthwith a desired spectral width,wewould like tomaximize the emissivity inside

the desired spectral width, while minimize it everywhere else. Therefore, we define the

loss function as the ratio between the area under the spectral emissivity curve outside

and inside the desired spectral width, in frequency domain.

With the loss function defined, we can find the DTGEN leaf (or a group of leaves)

which minimizes the loss function. We call this leaf the target leaf. Using this target

leaf, we can extract the design rules, which are the ranges imposed by DTGEN on

various features (i.e., material, geometry class and dimensions) to reach the target

leaf. Design rules are determined by finding the intersection of all the split rules

that happened along the way that ended at the target leaf.

We can use the design rules to generate candidate designs that should achieve an

emissivity very close to the emissivity predicted at the target leaf. We generate

the candidate designs by randomly choosing particle parameters within ranges

dictated by the design rules, while ensuring these particle parameters are consistent

with the geometry class, as will be illustrated later.

Generation of Candidate Designs from Design Rules

We start generating candidate designs by choosing materials and geometries within

categories dictated by design rules for material and geometry class features, respec-

tively. Then, we generate dimensions for candidate designs, depending on the ge-

ometry class suggested by design rules, as follows.

For spheres, we start by finding the diameter range that corresponds to the intersec-

tion of the four design rules for area to volume, longest, middle, and shortest dimen-

sions. The diameter range that corresponds to the area-to-volume range can be

calculated from the simple relationship D = 6 / area-to-volume. We use the resulted

diameter range to generate diameters for candidate spheres.

Cylinders can be fully described by lengths and diameters, and they can be catego-

rized into long wires and flat discs, according to whether the length is greater or

smaller than the diameter, respectively. For long wires and flat discs, we start by
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randomly choosing length for candidate designs using longest or shortest ranges,

respectively, dictated by the design rules. The diameter is chosen randomly from

the intersection of the two-dimensional ranges: middle and shortest dimensions

ranges for long wires, and longest andmiddle dimensions ranges for flat discs. Using

lengths and diameters for candidate designs, we calculate their area to volume and

choose only candidate designs in which the area to volume falls within the area-to-

volume range dictated by the design rules.

Parallelepiped and triangular prisms can be described by the longest, middle, and

shortest dimensions, and they can be generated for candidate designs by choosing

them randomly from ranges dictated by the design rules, whilemaking sure that longest

> middle > shortest. We calculate the area to volume for candidate designs and choose

only candidate designs in which the area to volume falls within the area-to-volume range

dictated by the design rules. For the inverse design of triangular prisms, we assumed

that the base height < base width < length along the extrusion axis.
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